Aldo-Keto Reductases 1B in Adrenal Cortex Physiology

نویسندگان

  • Emilie Pastel
  • Jean-Christophe Pointud
  • Antoine Martinez
  • A. Marie Lefrançois-Martinez
چکیده

Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning and characterization of four rabbit aldo-keto reductases featuring broad substrate specificity for xenobiotic and endogenous carbonyl compounds: relationship with multiple forms of drug ketone reductases.

Multiple forms of reductases for several drug ketones were isolated from rabbit liver, but their interrelationship and physiologic roles remain unknown. We isolated cDNAs for four aldo-keto reductases (AKR1C30, AKR1C31, AKR1C32, and AKR1C33), which share high amino acid sequence identity with the partial sequences of two rabbit naloxone reductases. The four recombinant enzymes reduced a variety...

متن کامل

Comparative anatomy of the aldo-keto reductase superfamily.

The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/...

متن کامل

Regulation of Aldo–Keto Reductases in Human Diseases

The aldo-keto reductases (AKRs) are a superfamily of NAD(P)H-linked oxidoreductases, which reduce aldehydes and ketones to their respective primary and secondary alcohols. AKR enzymes are increasingly being recognized to play an important role in the transformation and detoxification of aldehydes and ketones generated during drug detoxification and xenobiotic metabolism. Many transcription fact...

متن کامل

Role of Aldo–Keto Reductase Enzymes in Mediating the Timing of Parturition

A better understanding of the mechanisms underlying parturition would provide an important step toward improving therapies for the prevention of preterm labor. Aldo-keto reductases (AKR) from the 1D, 1C, and 1B subfamilies likely contribute to determining the timing of parturition through metabolism of progesterone and prostaglandins. Placental AKR1D1 (human 5β reductase) likely contributes to ...

متن کامل

Expression and localization of rat aldo-keto reductases and induction of the 1B13 and 1D2 isoforms by phenolic antioxidants.

The aldo-keto reductase (AKR) phase I drug metabolism enzyme superfamily is implicated in detoxification or bioactivation of a wide variety of carbonyl-bearing compounds. In this study, we have used antibodies raised against purified recombinant rat AKR isoforms 1A3, 1B4, 1C9, 1D2, and 7A1 to characterize the expression profile of these superfamily members in the rat and define their localizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016